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Abstract: Accurate Sea Surface Temperature (SST) prediction is vital for disaster prevention, ocean 14 
circulation, and climate change. Traditional SST prediction methods, predominantly reliant on time- 15 
intensive numerical models, face challenges in terms of speed and efficiency. In this study, we de- 16 
velop a novel deep learning approach using a 3D-Unet structure with multi-source data to forecast 17 
SST in the South China Sea (SCS). SST, sea surface height anomaly (SSHA), and sea surface wind 18 
(SSW) are used as input variables. Compared to the Convolutional Long Short-Term Memory (Con- 19 
vLSTM) model, the 3D-Unet model achieves more accurate predictions at all lead times (from 1 to 20 
30 days) and performs better in different seasons. Spatially, the 3D-Unet model's SST predictions 21 
exhibit low errors (RMSE<0.5°C) and high correlation (R>0.9) across most of the SCS. The spatially 22 
averaged time series of SST, both predicted by the 3D-Unet and observed in 2021, show remarkable 23 
consistency. A noteworthy application of the 3D-Unet model in this research is the successful detec- 24 
tion of marine heat wave (MHW) events in the SCS in 2021. The model accurately captured the 25 
occurrence frequency, total duration, average duration, and average cumulative intensity of MHW 26 
events, aligning closely with observed data. Sensitive experiments show that SSHA and SSW have 27 
significant impacts on the prediction of 3D-Unet model, which can improve the accuracy and play 28 
different roles in different forecast periods. The combination of 3D-Unet model with multi-source 29 
sea surface variables, not only rapidly predicts SST in the SCS but also presents a novel method for 30 
forecasting MHW events, highlighting its significant potential and advantages. 31 

Keywords: Sea Surface Temperature, Deep Learning, 3D-Unet Model, Marine Heat waves, South 32 
China Sea, Multi-source data. 33 
 34 

1. Introduction 35 
As an important parameter for oceanic systems, the sea surface temperature (SST) is 36 

crucial for exchanging energy, momentum, and moisture between the ocean and the at- 37 
mosphere [1-3]. Changes in SST can affect air-sea interaction, circulation patterns, and 38 
precipitation, subsequently influencing a range of weather, oceanic, and climate phenom- 39 
ena [4,5], such as El Niño-Southern Oscillation [6], Indian Ocean Dipole (IOD) [7,8], and 40 
coral bleaching [9]. Furthermore, variations in SST are also important for the formation, 41 
evolution, and trajectory of tropical cyclones [10-12]. Consequently, accurate prediction 42 
of SST is essential for detecting oceanic extreme events and enhancing our understanding 43 
of ocean and climate change. However, accurate prediction of SST remains challenging, 44 
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especially in regions with high variability, due to complex dynamical and thermal pro- 45 
cesses at the air-sea interface, including ocean waves [13], turbulence [14], and radiation 46 
fluxes [15]. 47 

The South China Sea (SCS), a semi-enclosed marginal sea located in the southeastern 48 
part of the Asian continent, plays an important role in global climate patterns due to its 49 
location within the Indo-Pacific warm water pool, known for its higher SST [16]. Through 50 
various straits, it connects to the Pacific Ocean, the Indian Ocean, and some Seas. Due to 51 
the unique geographical position of the SCS, combined with the influence of monsoons, it 52 
has resulted in a complex circulation system [17], as illustrated in Figure 1. The variability 53 
of SST in the SCS, typically following a southwest-northeast gradient with temperatures 54 
rising from north to south, is significantly impacted by this system [18]. The distinct geo- 55 
graphical characteristics and complex circulation patterns of the SCS make its SST varia- 56 
tions particularly important. For example, a rise in SST can intensify monsoon activity, 57 
altering regional precipitation patterns [19]. Additionally, the higher SST in the SCS can 58 
lead to coral bleaching, impacting the rich biodiversity within and around these waters 59 
[9]. Consequently, accurately predicting these SST changes is crucial for understanding 60 
regional ocean circulation and the broader effects of climate change. However, this pre- 61 
diction is highly challenging, owing to the significant variations in heat flux, radiation, 62 
and wind stress. 63 

 64 
Figure 1. Schematic diagram of the circulation structure in the SCS and the long-term average SST 65 
(°C) derived from OISST data from January 1, 1982 to December 31, 2021. 66 

Currently, the SST prediction methods are mainly divided into physics-based and 67 
data-driven methods. Physics-based models, while offering detailed representations of 68 
ocean dynamics, are computationally demanding. Because they need to account for com- 69 
plex dynamical and physical processes in the ocean [20-22]. In contrast, data-driven sta- 70 
tistical methods and machine learning models are gradually applied in predicting SST by 71 
accumulating oceanic data and technological advancements. These methods, including 72 
Markov models [23,24], canonical correlation analysis [25], linear regression [26], and sup- 73 
port vector machine (SVM) [27], use historical data to discern patterns and relationships. 74 
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While these approaches are computationally more efficient, they generally lack the com- 75 
plexity of their numerical counterparts, focusing primarily on pattern recognition and sta- 76 
tistical inference. This simplicity limits their effectiveness in capturing the nonlinear dy- 77 
namics of ocean processes, often resulting in lower predictive accuracy than numerical 78 
models. 79 

Due to the powerful nonlinear feature extraction capabilities, deep learning models 80 
developed through advancements in artificial intelligence technology have been increas- 81 
ingly applied in predicting SST. Various models such as back propagation neural net- 82 
works (BPNN) [28], wavelet neural networks (WNN) [29], convolutional neural networks 83 
(CNN) [30], and long short-term memory (LSTM) [31,32] have demonstrated efficacy in 84 
predicting SST and its related phenomena. For example, Xiao et al. [33] have used an Ada- 85 
Boost model combined with LSTM to predict SST anomaly (SSTA), outperforming con- 86 
ventional models like support vector regression (SVR) and BPNN in the East China Sea. 87 
Furthermore, Yang et al. [34] integrated LSTM with convolutional layers for improved 88 
SST prediction accuracy, outperforming traditional SVR and fully connected LSTM meth- 89 
ods. Similarly, the Unet-LSTM model by Taylor & Feng [35] combined 2D convolution 90 
with LSTM for monthly mean SST prediction, effectively aiding forecasting phenomena 91 
like El Niño. Despite these advancements, most studies, including those in the SCS by 92 
Song et al. [36] and Hao et al. [37], have primarily utilized single-variable predictions, 93 
overlooking the interplay between different oceanic variables. This approach often limits 94 
the physical significance and overall accuracy of the models. Previous studies indicate 95 
that multivariable inputs often lead to better forecasting outcomes. Shao et al. [38] estab- 96 
lished an advanced model with physical information, which combines the multivariate 97 
empirical orthogonal functions (MEOF) and Conv1D-LSTM, using sea surface height 98 
anomaly (SSHA) and SST for short-term prediction and considering the correlation be- 99 
tween different variables. This model exhibited strong performance in both normal and 100 
extreme weather conditions. Recently, Miao et al. [39] have also reached similar conclu- 101 
sions. Based on a multivariate CNN model, they used SSTA, wind speeds, and surface 102 
current velocity as input variables to predict SSTA, achieving more accurate forecasts. 103 

In summary, while deep learning has significantly enhanced SST prediction capabil- 104 
ities, research has specifically focused on the SCS remains limited. Existing models often 105 
focus on single-point predictions or individual variables, overlooking the complex inter- 106 
play among different variables, which can diminish their physical relevance and accuracy. 107 
The accuracy of the model's forecasts also requires further improvement. To solve these 108 
limitations, a novel deep learning model based on the 3D-Unet architecture has been in- 109 
troduced in this study. This model was designed to effectively capture the intricate corre- 110 
lations between multiple sea surface variables and extract spatial-temporal features. Its 111 
application marks a significant advancement in SST prediction for the SCS, potentially 112 
enhancing the model's accuracy and physical relevance. The remaining parts of this study 113 
are organized into the following parts: Section 2 details the various sea surface data of the 114 
SCS used in the study and the SST prediction models established. The presentation and 115 
evaluation of the results are in Section 3. Section 4 is the summary and discussion of the 116 
study. 117 

2. Data and methods 118 

2.1. Data 119 
This study focuses on the SCS region, specifically between 105°E to 122.5°E longitude 120 

and 0° to 23°N latitude, as shown in Figure 1. The Sulu and Celebes Seas are not included 121 
to avoid their impact on the prediction and result analysis. Considering previous research 122 
conclusions and the quality and accessibility of data from satellite remote sensing, we 123 
have chosen SST, sea surface wind (SSW), and SSHA as our input parameters in this study. 124 
These are selected for their demonstrated relevance in predicting SST patterns, as well as 125 
for the reliability of the data associated with them. 126 
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The SST data used in this study are obtained from the National Oceanic and Atmos- 127 
pheric Administration (NOAA) daily Optimum Interpolation SST (OISST) version 2.1 da- 128 
taset [40], with a resolution of 0.25°. It was a composite of multiple SST data sources, filling 129 
gaps with optimum interpolation techniques. This dataset encompassed a period from 130 
September 1, 1981, to the present. 131 

The SSW data are obtained from the Cross-Calibrated Multi-Platform (CCMP) da- 132 
taset v2.0 [41], with a resolution of 0.25°. It was composed of eastward SSW (ESSW) and 133 
northward SSW (NSSW) from July 10, 1987, to the present, with a temporal resolution of 134 
one-fourth of a day. 135 

Lastly, the SSHA data are obtained from the Collecte Localisation Satellites (CLS, 136 
France), produced by the Copernicus Marine and Environmental Monitoring Service 137 
(CMEMS). This dataset integrated data from multiple satellite altimeters covering the 138 
global ocean. It provided daily SSHA from January 1, 1993 to August 4, 2022 at a spatial 139 
resolution of 0.25°.  140 

Given the accessibility of the sea surface data, the selected duration for this study is 141 
extended from January 1, 1993 to December 31, 2021. For model training, data spanning 142 
from January 1, 1993 to December 31, 2020, are used, with a random selection of 80% for 143 
the training set and the remaining 20% for validation. Subsequently, the model's perfor- 144 
mance in predicting SST has been evaluated using a separate test set, which comprised 145 
data from January 1, 2021 to December 31, 2021. For the convenience of calculation and 146 
model training, we averaged the SSW data, originally recorded at six-hour intervals, to a 147 
daily time scale. Finally, all input variables for the model are daily data with a spatial 148 
resolution of 0.25°. The data summary and regional information are shown in Table 1. All 149 
data have been normalized before being used in model training, and any land portions 150 
within the study area are filled with zeros. The normalization formula is as follows: 151 

𝑥𝑥′ =
𝑥𝑥 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠𝑠𝑠
=

𝑥𝑥 −
∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1
𝑛𝑛

�∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛

 (1) 

Table 1. The data summary and regional information used in this study. 152 

Index Details 

Study Area 105°E-122.5°E, 0°-23°N South China Sea 

Data 

SST 1993-2021 NOAA 
0.25°× 0.25° 

Daily 
SSHA 1993-2021 CMEMS 

SSW (ESSW, NSSW) 1993-2021 CCMP 

Training set 1993-2020 

Testing set 2021 

2.2. Methods 153 
This study proposes a 3D-Unet model using multi-source sea surface variables for 154 

predicting the daily SST in the SCS. While the U-Net method has been widely used in 155 
various forecasting tasks [42-44], the basic U-Net structure, as created by Ronneberger et 156 
al. [45], is primarily developed for processing two-dimensional data, such as images, and 157 
is mainly used to extract spatial information features. Its structure is not designed with its 158 
ability to extract feature information between multiple variables in prediction tasks.  159 

Therefore, to better accommodate multiple marine surface variables when predicting 160 
the SST of the SCS, we modified the 2D operations in the U-net model to their correspond- 161 
ing 3D operations and thus constructed the 3D-Unet model [46]. This modification enables 162 
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the model to process feature information not just in spatial dimensions but also along the 163 
temporal domain. Specifically, this structure enables the feature maps in the convolutional 164 
layer to connect with multiple time sequences from the previous layer, thereby acquiring 165 
their feature information. Formally, the value at location (𝑥𝑥,𝑦𝑦, 𝑧𝑧) on the 𝑗𝑗th feature map 166 
in the 𝑖𝑖th layer is represented as [47]: 167 

𝑣𝑣𝑖𝑖𝑖𝑖
𝑥𝑥𝑥𝑥𝑥𝑥 = tanh (𝑏𝑏𝑖𝑖𝑖𝑖 + � � � � 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣(𝑖𝑖−1)𝑚𝑚
(𝑥𝑥+𝑝𝑝)(𝑦𝑦+𝑞𝑞)(𝑧𝑧+𝑟𝑟)

𝑅𝑅𝑖𝑖−1

𝑟𝑟=0

𝑄𝑄𝑖𝑖−1

𝑞𝑞=0

𝑃𝑃𝑖𝑖−1

𝑝𝑝=0𝑚𝑚
)  (2) 

where tanh (·) refers to the hyperbolic tangent function. The term 𝑏𝑏𝑖𝑖𝑖𝑖 represents the bias 168 
associated with the given feature map. 𝑅𝑅𝑖𝑖 represents the value of the convolutional kernel 169 
in temporal dimension, while 𝑃𝑃𝑖𝑖 and 𝑄𝑄𝑖𝑖 corresponding to the kernel's height and width, 170 
respectively. The 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝  denotes the weight value at position (𝑝𝑝, 𝑞𝑞, 𝑟𝑟) for the convolu- 171 
tional kernel, and 𝑚𝑚 is the index of the feature map. 172 

By applying convolution calculations in multiple dimensions, the 3D-Unet model can 173 
discern intricate correlations and extract critical feature information across multiple vari- 174 
ables. This multi-dimensional convolution approach is particularly effective when pre- 175 
dicting SST, as it allows for the simultaneous consideration of various variables, including 176 
SST, SSW, and SSHA. Maintaining the temporal continuity of these variables is a signifi- 177 
cant advantage of this method, which is essential for enhancing the accuracy of our pre- 178 
diction. 179 

After conducting multiple experiments and analyzing the constraints of the model 180 
structure, we determine that utilizing a historical data window of 64 days would opti- 181 
mally predict SST for a future period of 30 days. The flowchart of the 3D-Unet model 182 
employed in this study is shown in Figure 2a. We adopt the 3D-Unet model and the joint 183 
strategy, using the historical 64-day SST, SSHA, ESSW, and NSSW to forecast SST over 184 
the subsequent 30 days. The encoder of the 3D-Unet model utilizes convolution and pool- 185 
ing operations in both spatial and temporal dimensions to capture sea surface variables 186 
variations across different regions and times, enabling it to effectively learn relevant fea- 187 
tures. Subsequently, the decoder segment uses the features identified by the encoder to 188 
perform deconvolution and upsampling processes to map these features back to their 189 
original spatial and temporal scales, generating the prediction of future SST values, 190 
thereby accomplishing the task of forecasting SST in the SCS. 191 
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 192 
Figure 2. Flow chart for predicting SST in the SCS using the 3D-Unet model (a) and the ConvLSTM 193 
model (b), along with the forecasting strategies used by each model. 194 

This is the first time the multivariable 3D-Unet model has been used for SST predic- 195 
tion in the SCS, representing a significant step forward in our methodological approach. 196 
To thoroughly evaluate the performance of the 3D-Unet model, the ConvLSTM model, a 197 
widely recognized deep learning model shown in Figure 2b, was selected for comparison. 198 
The ConvLSTM model is proposed by Shi et al. [48] to address the shortcomings of the 199 
LSTM model in extracting two-dimensional spatial information. By adding convolution 200 
operations to the LSTM model, the ConvLSTM can learn and extract features in both tem- 201 
poral and spatial dimensions simultaneously. The model integrates current input and past 202 
states for predictions, governed by the input gate 𝑖𝑖𝑡𝑡, forget gate 𝑓𝑓𝑡𝑡, and output gate 𝑜𝑜𝑡𝑡. 203 
This controls the memory cell 𝐶𝐶𝑡𝑡and its final state 𝐻𝐻𝑡𝑡, enabling efficient spatiotemporal 204 
feature extraction. The primary equations of this process are as follows: 205 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑥𝑥 ∗ 𝑋𝑋𝑡𝑡 + 𝑊𝑊ℎ𝑖𝑖 ∗ 𝐻𝐻𝑡𝑡−1 + 𝑊𝑊𝑐𝑐𝑐𝑐 ∘ 𝐶𝐶𝑡𝑡−1 + 𝑏𝑏𝑖𝑖)  

𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑥𝑥𝑥𝑥 ∗ 𝑋𝑋𝑡𝑡 + 𝑊𝑊ℎ𝑓𝑓 ∗ 𝐻𝐻𝑡𝑡−1 + 𝑊𝑊𝑐𝑐𝑐𝑐 ∘ 𝐶𝐶𝑡𝑡−1 + 𝑏𝑏𝑓𝑓�  

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∘ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∘ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑥𝑥𝑥𝑥 ∗ 𝑋𝑋𝑡𝑡 + 𝑊𝑊ℎ𝑐𝑐 ∗ 𝐻𝐻𝑡𝑡−1 + 𝑏𝑏𝑐𝑐) (3) 

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑥𝑥 ∗ 𝑋𝑋𝑡𝑡 + 𝑊𝑊ℎ𝑜𝑜 ∗ 𝐻𝐻𝑡𝑡−1 + 𝑊𝑊𝑐𝑐𝑐𝑐 ∘ 𝐶𝐶𝑡𝑡 + 𝑏𝑏𝑜𝑜)  

𝐻𝐻𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∘ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝐶𝐶𝑡𝑡)  



Atmosphere 2023, 14, x FOR PEER REVIEW 7 of 22 
 

 

where 𝜎𝜎 represents the sigmoid activation function, which can map values to the range 206 
between 0 and 1, ∗ denotes the convolutional operation introduced into the model, the 207 
symbol ∘ represents the Hadamard product, while tanh (·) denotes the hyperbolic tan- 208 
gent function. The comparison between our 3D-Unet model and the ConvLSTM model is 209 
particularly insightful. While the ConvLSTM model brings its strengths in handling spa- 210 
tiotemporal data, our 3D-Unet model introduces an innovative approach to multivariable 211 
integration for SST prediction. This comparative analysis aims to showcase the potential 212 
advantages and limitations of each model, providing a comprehensive understanding of 213 
their applicability in SST prediction within the unique context of the SCS. 214 

Parameterization plays a key role in training deep learning models, often serving as 215 
a crucial determinant of their performance. Recognizing this, our study involves conduct- 216 
ing extensive experiments to meticulously tune and optimize these parameters. This pro- 217 
cess, involving comparative analysis of various configurations, has led us to identify the 218 
most effective parameter sets for our models. The details of these critical parameters, 219 
which significantly contributed to enhancing the models' predictive accuracy, are com- 220 
prehensively presented in Table 2. 221 

Table 2. The parameters of the 3D-Unet and ConvLSTM models. 222 

Models Parameters 

ConvLSTM 
num_layers=3, hidden_dim=[64,64,30], 
kernel_size=(3, 3), bias=True,  
return_all_layers=False, padding=1 

batch size: 12, activation 
function: elu, validation 
frequency: per epoch;  
loss function: mse, opti-
mizer: radam, learning 
rate: 0.01, epoch:1000,  
earlystopping;  

3D-Unet 
num_layers=3, size = [64,128,256], 
groupnorm = 4, conv_kernel_size=3, 
pool_kernel_size=2, conv_padding=1 

To assess the performance of 3D-Unet for SST prediction, we select four statistical 223 
indicators, including root mean square error (RMSE), Pearson correlation coefficient (R), 224 
mean absolute error (MAE) and mean absolute percentage error (MAPE). Each of these 225 
indicators offers a unique perspective on the model's accuracy and reliability. The formu- 226 
las for these statistical metrics are presented below, providing a mathematical basis for 227 
our evaluation methodology: 228 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)𝑛𝑛
𝑖𝑖=1

𝑛𝑛
  

𝑅𝑅 =
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)(𝑦𝑦�𝑖𝑖 − 𝑦𝑦��)𝑛𝑛
𝑖𝑖=1

�∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1 �∑ (𝑦𝑦�𝑖𝑖 − 𝑦𝑦��)2𝑛𝑛

𝑖𝑖=1

 (4) 

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ |𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖|𝑛𝑛
𝑖𝑖=1

𝑛𝑛
  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
100%
𝑛𝑛

� �
𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖
𝑦𝑦𝑖𝑖

�
𝑛𝑛

𝑖𝑖=1
  

where 𝑦𝑦𝑖𝑖 is the observed SST, 𝑦𝑦�𝑖𝑖 represents the SST predicted by the 3D-Unet model, and 229 
𝑦𝑦� and 𝑦𝑦�� respectively represent the mean of observed and predicted values. 230 

3. Results 231 

3.1. Comparison of the 3D-Unet model with the ConvLSTM model 232 
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To evaluate the 3D-Unet model's performance in predicting SST in the SCS, we first 233 
compared it with the ConvLSTM model in terms of R and RMSE using data from 2021. 234 
Figure 3 shows the comparison of R and RMSE for SST predictions in the SCS using the 235 
3D-Unet and ConvLSTM models over 1 to 30 days lead times throughout the year 2021. 236 

 237 
Figure 3. Performance comparison of the 3D-Unet and ConvLSTM models in predicting SST at dif- 238 
ferent lead times in the SCS in 2021. Orange represents the 3D-Unet model, while blue represents 239 
the ConvLSTM model. The lines indicate R, and the bars indicate the RMSE, calculated from all data 240 
used at different lead times in the test set. 241 

Both the 3D-Unet and ConvLSTM models exhibit robust predictive performance over 242 
a 30-day forecast horizon in SST prediction, with high correlation (minimum value of R 243 
greater than 0.9) and low error (maximum value of RMSE less than 0.9°C) (Figure 3). The 244 
results from both models, as the lead time increases from 1 to 30 days, consistently show 245 
a decreasing trend in R and a corresponding increase in RMSE. This trend indicates a di- 246 
minishing correlation between observed and predicted SST values and an incremental rise 247 
in forecast error as the prediction lead time lengthens. However, in a relative comparison 248 
across all prediction lead times, the 3D-Unet model consistently outperforms the Con- 249 
vLSTM model, maintaining higher R values and lower RMSE. This outstanding perfor- 250 
mance of the 3D-Unet model, regarding forecast reliability, underscores its superior fore- 251 
casting skill compared to the ConvLSTM model. 252 

For a more detailed and objective evaluation of the two models, we also calculated 253 
various statistical indicators for SST predictions at different lead times, with results pre- 254 
sented in Table 3. At the 1-day lead time, the 3D-Unet model demonstrated superiority 255 
with an MAE of 0.23, compared to the ConvLSTM model's MAE of 0.27. This trend of the 256 
3D-Unet model outperforming the ConvLSTM model continues across RMSE and MAPE 257 
metrics. Although both models exhibit high R values, the 3D-Unet model (0.99) is slightly 258 
higher than the ConvLSTM model (0.98). Notably, as the forecast lead time extends to 7, 259 
14, and 30 days, the model error increases, but the 3D-Unet model consistently maintains 260 
better performance across all metrics. Notably, on the 30th day, when the model perfor- 261 
mance dropped the most, the MAE, RMSE, MAPE, and R of the 3D-Unet model are 0.51, 262 
0.69, 1.83%, and 0.93, respectively, which are still better than the results of ConvLSTM of 263 
0.57, 0.77, 2.01% and 0.92. Obviously, the 3D-Unet model achieves better forecasting per- 264 
formance at different lead times. 265 

Table 3. Comparative statistical results of SST predictions by the ConvLSTM and 3D-Unet models 266 
at different lead times. 267 

Models Metrics Prediction lead (day) 
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1 7 14 30 

ConvLSTM 

MAE 0.27 0.43 0.51 0.57 

RMSE 0.38 0.60 0.69 0.77 

MAPE 0. 95% 1.54% 1.81% 2.01% 

R 0.98 0.96 0.94 0.92 

3D-Unet 

MAE 0.23 0.39 0.46 0.51 

RMSE 0.31 0.52 0.61 0.69 

MAPE 0.83% 1.39% 1.64% 1.83% 

R 0.99 0.97 0.95 0.93 

 268 
At the same time, we also compared the performance of the 3D-Unet and ConvLSTM 269 

models across different seasons, selecting February, May, August, and November to rep- 270 
resent winter, spring, summer, and autumn, respectively. Forecasting errors (observed 271 
minus predicted values) were calculated for each season, and Gaussian kernel density 272 
estimation [49,50] was employed to analyze the distribution of these errors, as shown in 273 
Figure 4. The analysis revealed that the 3D-Unet model consistently achieved lower fore- 274 
casting errors than the ConvLSTM model across all seasons, with errors being denser and 275 
closer to zero. Notably, while the kernel density curves for February and May (winter and 276 
spring) were somewhat sparser, indicating minor overestimation and underestimation, 277 
respectively, the 3D-Unet model's curves remained comparatively denser and closer to 278 
zero. This pattern persisted even in the denser curves of August and November (summer 279 
and autumn). Overall, the 3D-Unet model demonstrated superior seasonal prediction per- 280 
formance compared to the ConvLSTM model. 281 

 282 
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Figure 4. The Gaussian kernel density estimation of prediction errors (°C) for all lead times (1-30 283 
days) in February, May, August, and November of 2021, using the 3D-Unet and ConvLSTM models. 284 

3.2. Evaluation of the 3D-Unet model 285 
The discussions above show the 3D-Unet model's better performance in SST predic- 286 

tion over the ConvLSTM model. This section delves further into evaluating the perfor- 287 
mance of the 3D-Unet model in the SCS from different perspectives. To thoroughly eval- 288 
uate the accuracy and correlation between the predictions of 3D-Unet and the observed 289 
values, we calculated the RMSE and R between the forecast results and observed values 290 
for each month in 2021 (the 30-day forecast results for each were based on data from the 291 
preceding 64 days). Throughout the year, the 3D-Unet model consistently shows lower 292 
RMSE (mainly within the range of 0-0.5°C), and most R values exceed 0.7, as depicted in 293 
Figure 5. Although error distribution varies monthly, larger errors predominantly occur 294 
later in the forecast period, suggesting a gradual decline in model performance over time 295 
(Figure 5a). Figure 5b shows that, according to the distribution of R values, there is a pos- 296 
itive correlation between the SST predicted by the 3D-Unet model and the observed val- 297 
ues on most days in all months. However, from May to August, particularly in May, June, 298 
and August, the model experiences intermittent dips in correlation (R<0.8). Notably, from 299 
September onwards, the correlation strength recovers significantly (R>0.9), a pattern pos- 300 
sibly linked to the SCS's complex summer monsoon climate and circulation systems. 301 
Overall, the 3D-Unet model demonstrates relatively good performance across different 302 
months. 303 

 304 
Figure 5. The distribution of (a) RMSE (°C) and (b) R values for all lead times (1-30 days) in the SST 305 
prediction using the 3D-Unet model over 12 months in 2021. 306 

Figure 6 presents the spatial distribution of RMSE and R between estimated and ob- 307 
served SST in the SCS for the year 2021. The generally low RMSE between the SST predic- 308 
tions from the 3D-Unet model and the observation in most areas of the SCS indicates a 309 
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high degree of accuracy and correlation. Primarily along the northern coast of the SCS, 310 
areas with relatively higher RMSE are identified, where the RMSE are in excess of 0.5°C. 311 
In contrast, areas with relatively lower correlation coefficients, primarily situated in the 312 
southeastern parts of the SCS and showing R values below 0.9, as shown in Figure 6b. 313 
These findings further illustrate the 3D-Unet model's reliability in accurately predicting 314 
SST in the SCS. 315 

 316 
Figure 6. The spatial distribution of (a) RMSE (°C) and (b) R from the 2021 SST predictions in the 317 
SCS using the 3D-Unet model. 318 

To thoroughly conduct a comprehensive assessment of the 3D-Unet model's perfor- 319 
mance across different regions of the SCS, we selected four different areas, each with a 320 
range of 4°×4°, labeled as boxes A, B, C, and D, as shown in Figure 7a. Box A (116.5°E - 321 
117.5°E, 19.5°N - 20.5°N) is situated near the southern continental shelf of China, while 322 
Box B (117.5°E - 118.5°E, 16.5°N - 17.5°N) aligns with the West Luzon eddy region. Situ- 323 
ated near the central-southern SCS is Box C (114.5°E - 115.5°E, 11.5°N - 12.5°N), and Box 324 
D (111°E - 112°E, 15.5°N - 16.5°N) is situated near the eastern Vietnam eddy. The scatter 325 
plots in Figures 7b to 7e compare the SST predictions from the 3D-Unet model against 326 
observed SST across all data grids in the test set within these regions. The results indicate 327 
a robust positive linear correlation between predicted SST by the 3D-Unet model and ob- 328 
servation in these typical areas, with most scatter points clustering near the line of equality, 329 
indicative of lower RMSE values and higher R values. The RMSE (R) for these four regions 330 
are 0.54°C (0.93), 0.48°C (0.93), 0.36°C (0.89), and 0.31°C (0.96), respectively, underscoring 331 
the reliability and effectiveness of the 3D-Unet model in diverse areas of the SCS. In addi- 332 
tion to RMSE and R, we further evaluated the performance of the 3D-Unet model at dif- 333 
ferent lead times in the four regions using additional indicators, such as MAE and MAPE 334 
(Table 4). Through different indicators, the 3D-Unet demonstrates strong performance in 335 
all regions and lead times, marked by low error rates and strong correlations. Notably, 336 
while there is a slight decline in performance as lead times increase, the 3D-Unet model's 337 
accuracy remains within a satisfactory range. This demonstrates the model's robustness 338 
and reliability in diverse areas of the SCS. 339 



Atmosphere 2023, 14, x FOR PEER REVIEW 12 of 22 
 

 

 340 
Figure 7. The four selected areas (Boxes A-D) used in this study, with Box A located at 116.5°E to 341 
117.5°E, 19.5°N to 20.5°N, Box B at 117.5°E to 118.5°E, 16.5°N to 17.5°N, Box C at 114.5°E to 115.5°E 342 
11.5°N to 12.5°N, and Box D at 111°E to 112°E, 15.5°N to 16.5°N. Scatter plots comparing SST pre- 343 
dicted by the 3D-Unet model with observations across these regions (Boxes A-D) in 2021 (right 344 
panel). 345 

Table 4. The statistical results of predictions from the 3D-Unet model at different lead times in four 346 
selected regions. 347 

Area Metrics 
Prediction lead (day) 

1 7 14 30 

Box A 

MAE 0.25 0.51 0.61 0.72 

RMSE 0.33 0.65 0.78 0.91 

MAPE 0. 91% 1.82% 2.20% 2.59% 

R 0.99 0.96 0.94 0.91 

Box B 

MAE 0.28 0.50 0.60 0.59 

RMSE 0.36 0.63 0.75 0.74 

MAPE 0.98% 1.75% 2.08% 2.06% 

R 0.99 0.95 0.93 0.93 

Box C 

MAE 0.19 0.36 0.44 0.47 

RMSE 0.25 0.46 0.54 0.60 

MAPE 0.67% 1.25% 1.55% 1.66% 

R 0.19 0.36 0.44 0.47 

Box D 
MAE 0.21 0.35 0.42 0.47 

RMSE 0.27 0.45 0.53 0.58 
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 348 
Subsequently, we used the 3D-Unet model to predict SST in the SCS for 2021, with a 349 

cycle of 30 days. A time series analysis was performed for each of the four selected areas. 350 
Figures 8a to 8d illustrate the model's SST time series predictions alongside observed data, 351 
representing the respective spatial average outcomes for Boxes A, B, C, and D. The com- 352 
parison reveals that, aside from minor underestimations, the SST predicted by the 3D- 353 
Unet model is quite consistent with observed values. The RMSE (R) between the predicted 354 
and observed values are 0.44 (0.98), 0.42 (0.98), 0.29 (0.97), and 0.30 (0.99) for Boxes A, B, 355 
C, and D, respectively. These results highlight the 3D-Unet model's robust and consistent 356 
predictive performance, even over extended lead times. 357 

 358 
Figure 8. Spatially averaged time series comparison of SST for 2021, predicted by the 3D-Unet model 359 
and observed by satellites, including (a) Box A, (b) Box B, (c) Box C, and (d) Box D. 360 

3.3. Comparison of marine heat wave (MHW) events 361 
To further assess the capabilities of the 3D-Unet model, we evaluated its ability to 362 

forecast MHW events in the SCS for 2021 using the threshold method. We defined a rela- 363 
tive threshold for MHW events as instances where the daily SST at a specific location sur- 364 
passes the 90th percentile threshold, determined by seasonal variations across a climatol- 365 
ogy period of over 30 years. For this purpose, OISST data from 1982 to 2020 were utilized 366 
to compute the climatological baseline. An event is classified as an MHW if it persists for 367 
at least five consecutive days, as per Hobday et al. [51]. Additionally, if the interval be- 368 
tween consecutive events is less than two days, they are considered a single event. The 369 
climate thresholds were calculated centered around an eleven-day window for each cal- 370 
endar day and smoothed out using a moving average method over thirty-one days. After 371 
identifying MHW events, four indicators were used to describe and compare MHW char- 372 
acteristics (as shown in Figure 9), including HWN, HWT, HWDU, and HWI, whose defi- 373 
nitions can be found in Table 5 [52,53], where its cumulative intensity ∑ �𝑇𝑇𝑖𝑖𝑖𝑖 − 𝑇𝑇�𝑖𝑖𝑖𝑖�

𝐷𝐷𝑖𝑖
𝑗𝑗  in a 374 

MHW event is the sum of the temperature anomaly intensity (temperature higher than 375 
the historical baseline) during the total duration (HWT) of each MHW, and its unit is the 376 
"degree days", 𝑇𝑇𝑖𝑖𝑖𝑖 and 𝑇𝑇�𝑖𝑖𝑖𝑖 are the values of SST and corresponding climatology during 377 
the MHW event. 378 

 379 
 380 

MAPE 0.75% 1.26% 1.51% 1.69% 

R 0.99 0.97 0.95 0.94 
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Table 5. The definitions of the four MHW indices used in this study. 381 

Indexs Definition Formulas Unit 

HWN The number of MHW 
events 

𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑁𝑁 Times 

HWT The total duration of 
MHW events 𝐻𝐻𝐻𝐻𝐻𝐻 = � 𝐷𝐷𝑖𝑖

𝑁𝑁

𝑖𝑖=1
 Days 

HWDU The average duration of 
MHW events 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = � (𝐷𝐷𝑖𝑖)/𝑁𝑁

𝑁𝑁

𝑖𝑖=1
 Days/time 

HWI The average cumulative 
intensity of MHW events 

𝐻𝐻𝐻𝐻𝐻𝐻 = � � �𝑇𝑇𝑖𝑖𝑖𝑖 − 𝑇𝑇�𝑖𝑖𝑖𝑖�/𝑁𝑁
𝐷𝐷𝑖𝑖

𝑗𝑗

𝑁𝑁

𝑖𝑖
 Degree-days/time 

 382 
As shown in Figure 9, the SST predicted by the 3D-Unet model and the observed SST 383 

show good consistency in the numerical and spatial distribution of various statistical in- 384 
dicators of MHW events detected in the SCS. Particularly in the northern SCS (112°E- 385 
118°E, 20°N-22°N), prolonged MHW events were observed, with total durations exceed- 386 
ing 160 days (Figures 9a and 9b). Figures 9c and 9d show the average duration of these 387 
MHW events, which is similar to that of the total duration. In the areas with longer total 388 
duration, the average duration can reach 35 to 46 days. Conversely, the occurrence of 389 
MHW events is more dispersed across the area, with a notably higher frequency in the 390 
northern SCS compared to the south (Figures 9e and 9f). Figures 9g and 9h show that the 391 
spatial distributions of the average cumulative intensity of predicted and observed MHW 392 
events are relatively similar, and both show apparent differences between south and north 393 
regions with high values mainly located in the northern part of the SCS, with the average 394 
cumulative intensity of each MHW event exceeds 45 degree-days. These comparisons 395 
demonstrates that the 3D-Unet model can precisely forecast and detect the various fea- 396 
tures of the MHW event that occurred in the SCS in 2021 and help prevent disasters and 397 
climate changes caused by MHW events in advance, further verifying the model's perfor- 398 
mance. 399 
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 400 
Figure 9. Spatial distribution of MHW characteristics in the SCS in 2021: (a, b) the total duration of 401 
MHW events (HWT), (c, d) the average duration of MHW events (HWDU), (e, f) the number of 402 
MHW events (HWN), and (g, h) the average cumulative intensity of MHW events (HWI). The ob- 403 
servations are presented in the left panels, and the model predictions are in the right panels. The 404 
white box in panel (a) indicates a representative area selected in this study. 405 

In 2021, the northern SCS experienced a high frequency and duration of MHW events, 406 
as shown in Figure 9. Consequently, we focused on a representative area (112°E-118°E, 407 
20°N-22°N), marked by the white box in Figure 9a, to analyze the temporal dynamics of 408 
local MHW events (Figure 10). Since January 2021, this region has experienced multiple 409 
MHW events throughout all four seasons. Notably, two relatively intense and prolonged 410 
MHW events were observed from May to June and September to October. The 3D-Unet 411 
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model successfully captured these occurrences, demonstrating its proficiency in predict- 412 
ing MHWs. 413 

 414 
Figure 10. Seasonal variations of MHW events in the representative region in 2021. The curves de- 415 
pict the climatology (black), the 90th percentile seasonal threshold (green), the observed SST (blue), 416 
and the predicted SST (yellow), with the red area representing MHW events. 417 

To more clearly demonstrate the performance of the 3D-Unet model during MHW 418 
events, we selected the longest-lasting MHW event in 2021 and provided a spatial distri- 419 
bution of some model prediction results during this period (Figure 11). Despite some mi- 420 
nor discrepancies between the observed and predicted SST, the 3D-Unet model effectively 421 
captures SST distribution characteristics. Figure 12 presents the histograms of the SST dif- 422 
ference during this period, offering a more detailed view of the discrepancy distribution. 423 
These histograms, primarily centered close to 0°C, indicate that most prediction errors fall 424 
within the ±0.5°C range. Collectively, Figures 11 and 12 substantiate the 3D-Unet model's 425 
robust predictive performance during MHW events in the SCS. 426 
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 427 
Figure 11. The SST prediction results by the 3D-Unet model (from November 22, 2021 to December 428 
21, 2021 with a two-day interval displayed in the results) during MHW events in 2021. (a) and (d) 429 
show the observed SST. (b) and (e) show the predicted SST. (c) and (f) show the differences between 430 
observed and predicted values. 431 
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 432 
Figure 12. The deviation distribution in SST prediction results during MHW events from November 433 
22, 2021 to December 21, 2021 displayed at two-day intervals. 434 

To examine the relative contribution of different sea surface variables to SST predic- 435 
tion and MHW event detection in the SCS, a sensitivity experiment was performed using 436 
the 3D-Unet model. Figure 13 illustrates four different cases used in this sensitivity exper- 437 
iment. In the first group (Case 1), SSHA and SSW were introduced as input parameters 438 
based on SST. For the second group, SST and SSW were selected as predictors for SST 439 
(Case 2). And in the third group (Case 3), SST and SSHA were used, while the fourth 440 
group (Case 4) relied solely on SST. The results reveal that the inclusion of SSHA and SSW 441 
alongside SST (Case 1) yields the highest R values at various lead times, suggesting the 442 
best predictive performance (Figure 13). Conversely, the model relying solely on SST 443 
(Case 4) exhibits the lowest performance. This result indicates that SSHA and SSW are 444 
regulatory in SST forecasting and MHW event detection. The comparison of Case 2 with 445 
Case 3 reveals that SSW has a more significant impact on the model during the early stages 446 
of prediction, whereas the influence of SSHA becomes more pronounced as the lead time 447 
increases. These cases suggest that integrating SSHA and SSW can enhance the 3D-Unet 448 
model's accuracy in the SCS. 449 

 450 
Figure 13. The comparison of R values at different lead times using various input variable combi- 451 
nations. Case 1 includes SST, SSHA, and SSW (yellow), Case 2 includes SST and SSW (blue), Case 3 452 
includes SST and SSHA (orange), and Case 4 only relies on SST (beige). 453 

4. Summary and discussion 454 
As an important parameter for oceanic and climatic systems, accurate prediction of 455 

SST is crucial. To achieve the prediction of SST using multi-source data, we have devel- 456 
oped a 3D-Unet model to predict SST in SCS. Through comparative analysis with the Con- 457 
vLSTM model across different lead times and seasons using various statistical indicators, 458 
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the 3D-Unet model consistently demonstrated superior accuracy. RMSE values increased 459 
from 0.31°C to 0.69°C, while R values decreased from 0.99 to 0.93, outperforming Con- 460 
vLSTM at all lead times ranging from 1 to 30 days. The Gaussian kernel density curves of 461 
prediction error for the 3D-Unet model in different seasons are more densely distributed 462 
near 0 than that of the ConvLSTM model. Spatially, the 3D-Unet model predicted SST 463 
with lower error (RMSE<0.5°C) and higher correlation (R>0.9) across most of the SCS. In 464 
different regions of the SCS, the scatter plot of predicted SST and observed SST show that 465 
most scatter points cluster near the line of equality, indicative of lower RMSE values and 466 
higher R values. The RMSE (R) between the spatially averaged time series obtained from 467 
3D-Unet predictions and observations were respectively 0.44 (0.98), 0.42 (0.98), 0.29 (0.97) 468 
and 0.30 (0.99) in the typical areas in 2021. These also suggest that 3D-Unet model predic- 469 
tions were consistent with the observed results in different areas of the SCS.  470 

The 3D-Unet model's proficiency was further evaluated by its performance during 471 
MHW events in 2021. The results detected by the 3D-Unet model predictions and those 472 
observed directly both noted the long-lasting MHW events occurring in the northern SCS 473 
in 2021. The total duration exceeded 160 days, with an average duration ranging from 35 474 
to 46 days, and the average intensity of each MHW event exceeded 45 degree-days. De- 475 
spite some differences, the 3D-Unet model still demonstrates satisfactory prediction per- 476 
formance and ability to detect MHW events, which can assist in taking proactive measures 477 
to protect marine ecosystems, prevent disasters, and better adapt to and mitigate the im- 478 
pacts of climate change. Finally, sensitivity experiments and statistical analyses high- 479 
lighted the significant impact of different sea surface variables on SST prediction and 480 
MHW events detection. The results show that SSHA and SSW have a significant effect on 481 
model prediction, which can improve accuracy and forecasting skills. Moreover, in the 482 
early stage of forecasting, SSW plays a crucial role in predicting SST, and as the lead time 483 
increases, the role of SSHA in predicting SST gradually increases, reflecting complex in- 484 
teractions between variables. 485 

In conclusion, the 3D-Unet model using multi-source sea surface variables proposed 486 
in this study performs well in predicting 30-day SST in the SCS, introducing an innovative 487 
approach for MHW events detection. The uniqueness of the 3D-Unet model is that its 488 
model structure is simple, but it can directly use multi-source sea surface variables to ex- 489 
tract characteristic information of each variable, and more fully considers the interaction 490 
between variables. However, as a data-driven model, it faces limitations such as underes- 491 
timation or overestimation, and the MHW is also affected by the influence of ocean dy- 492 
namics and thermodynamics. Therefore, in future research, we plan to integrate more 493 
ocean dynamic mechanisms into the model to improve SST and MHW prediction accu- 494 
racy and forecasting skills. Furthermore, this model can be applied for forecasting addi- 495 
tional essential ocean parameters such as SSW, sea surface height, and thermohaline struc- 496 
ture, providing new ideas for future research work, so that it can play a more comprehen- 497 
sive role in marine disaster prevention, marine ranching, and environmental protection. 498 
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